Smoothness without Smoothing: Why Gaussian Naive Bayes Is Not Naive for Multi-Subject Searchlight Studies

نویسندگان

  • Rajeev D. S. Raizada
  • Yune-Sang Lee
چکیده

Spatial smoothness is helpful when averaging fMRI signals across multiple subjects, as it allows different subjects' corresponding brain areas to be pooled together even if they are slightly misaligned. However, smoothing is usually not applied when performing multivoxel pattern-based analyses (MVPA), as it runs the risk of blurring away the information that fine-grained spatial patterns contain. It would therefore be desirable, if possible, to carry out pattern-based analyses which take unsmoothed data as their input but which produce smooth images as output. We show here that the Gaussian Naive Bayes (GNB) classifier does precisely this, when it is used in "searchlight" pattern-based analyses. We explain why this occurs, and illustrate the effect in real fMRI data. Moreover, we show that analyses using GNBs produce results at the multi-subject level which are statistically robust, neurally plausible, and which replicate across two independent data sets. By contrast, SVM classifiers applied to the same data do not generate a replication, even if the SVM-derived searchlight maps have smoothing applied to them. An additional advantage of GNB classifiers for searchlight analyses is that they are orders of magnitude faster to compute than more complex alternatives such as SVMs. Collectively, these results suggest that Gaussian Naive Bayes classifiers may be a highly non-naive choice for multi-subject pattern-based fMRI studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagnosis of Pulmonary Tuberculosis Using Artificial Intelligence (Naive Bayes Algorithm)

Background and Aim: Despite the implementation of effective preventive and therapeutic programs, no significant success has been achieved in the reduction of tuberculosis. One of the reasons is the delay in diagnosis. Therefore, the creation of a diagnostic aid system can help to diagnose early Tuberculosis. The purpose of this research was to evaluate the role of the Naive Bayes algorithm as a...

متن کامل

A New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier

With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...

متن کامل

In silico prediction of anticancer peptides by TRAINER tool

Cancer is one of the causes of death in the world. Several treatment methods exist against cancer cells such as radiotherapy and chemotherapy. Since traditional methods have side effects on normal cells and are expensive, identification and developing a new method to cancer therapy is very important. Antimicrobial peptides, present in a wide variety of organisms, such as plants, amphibians and ...

متن کامل

Naive Bayes and Text Classification I - Introduction and Theory

2 Naive Bayes Classification 3 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Posterior Probabilities . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 Class-conditional Probabilities . . . . . . . . . . . . . . . . . . . 5 2.4 Prior Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.5 Evidence . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

Combining Naive Bayes and n-Gram Language Models for Text Classification

We augment the naive Bayes model with an n-gram language model to address two shortcomings of naive Bayes text classifiers. The chain augmented naive Bayes classifiers we propose have two advantages over standard naive Bayes classifiers. First, a chain augmented naive Bayes model relaxes some of the independence assumptions of naive Bayes—allowing a local Markov chain dependence in the observed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013